NMR reveals anomalous copper(II) binding to the amyloid Abeta peptide of Alzheimer's disease.

نویسندگان

  • Liming Hou
  • Michael G Zagorski
چکیده

The Abeta peptide is the major protein component of amyloid deposits in Alzheimer's disease (AD). Age-related microenvironmental changes in the AD brain promote amyloid formation that leads to cell injury and death. Altered levels of metals (such as Cu and Zn) exist in the AD brain, and because Cu and Zn can be bound to the Abeta in the amyloid plaques, it is thought that these binding events in vivo may trigger or prevent Abeta amyloid formation in the AD brain. Although several structural models have been proposed, all of these are undefined due to the lack of definitive structural data. The present NMR studies utilized uniformly 15N-labeled Abeta(1-40) peptide and 1H-15N HSQC experiments and demonstrate for the first time that the Abeta binds Cu and Zn in a distinct manner. The binding promotes NH signal disappearance of E3-V18, which was not due to the paramagnetic effect of Cu2+, as identical NMR studies were seen with Zn2+, which is diamagnetic. NMR titration experiments showed that the amide NH peak intensities of R5-L17 showed the most pronounced intensity reduction, and that the 1H signals for the side chain aromatic signals of the three histidines shift upfield (H6, H13, and H14). We propose that initially Cu2+ is anchored to the Abeta monomer (fast exchange rate) and is followed by deprotonation and/or severe line broadening of the backbone amide NH for E3-V18 (intermediate exchange rate). By contrast, Cu2+ binding to soluble Abeta aggregates leads to rapid aggregation and nonfibrillar amorphous structures, and without metal, the Abeta can undergo the normal time-dependent aggregation, eventually producing more ordered, late-stage parallel beta-sheet structures. These anomalous (rare) binding events may account for some of the unique properties associated with the Abeta, such as its proposed "dual role", where sequestration of metal ions by the monomer is neuroprotective, while that by beta-aggregates generates oxygen radicals and causes neuronal death.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binding of zinc(II) and copper(II) to the full-length Alzheimer's amyloid-beta peptide.

There is evidence that binding of metal ions like Zn2+ and Cu2+ to amyloid beta-peptides (Abeta) may contribute to the pathogenesis of Alzheimer's disease. Cu2+ and Zn2+ form complexes with Abeta peptides in vitro; however, the published metal-binding affinities of Abeta vary in an enormously large range. We studied the interactions of Cu2+ and Zn2+ with monomeric Abeta(40) under different cond...

متن کامل

Crystallization and preliminary crystallographic studies of the copper-binding domain of the amyloid precursor protein of Alzheimer's disease.

Alzheimer's disease is thought to be triggered by production of the amyloid beta (Abeta) peptide through proteolytic cleavage of the amyloid precursor protein (APP). The binding of Cu2+ to the copper-binding domain (CuBD) of APP reduces the production of Abeta in cell-culture and animal studies. It is expected that structural studies of the CuBD will lead to a better understanding of how copper...

متن کامل

Nicotine and amyloid formation.

The major protein constituents of amyloid deposits in Alzheimer's disease (AD) are the 40-residue beta-amyloid (Abeta) (1-40) peptide and the 42-residue Abeta(1-42) peptide. The Abeta(1-42) is more pathogenic and produced in greater quantities in familial forms of AD. A major goal of research is to uncover a suitable inhibitor that either slows down or inhibits Abeta formation (beta-amyloidosis...

متن کامل

Interprotofilament interactions between Alzheimer's Abeta1-42 peptides in amyloid fibrils revealed by cryoEM.

Alzheimer's disease is a neurodegenerative disorder characterized by the accumulation of amyloid plaques in the brain. This amyloid primarily contains amyloid-beta (Abeta), a 39- to 43-aa peptide derived from the proteolytic cleavage of the endogenous amyloid precursor protein. The 42-residue-length Abeta peptide (Abeta(1-42)), the most abundant Abeta peptide found in plaques, has a much greate...

متن کامل

A copper-binding site in the cytoplasmic domain of BACE1 identifies a possible link to metal homoeostasis and oxidative stress in Alzheimer's disease.

The amyloidogenic processing pathway of the APP (amyloid precursor protein) generates Abeta (amyloid beta-peptide), the major constituent in Alzheimer's disease senile plaques. This processing is catalysed by two unusual membrane-localized aspartic proteinases, beta-secretase [BACE1 (beta-site APP-cleaving enzyme 1)] and the gamma-secretase complex. There is a clear link between APP processing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 128 29  شماره 

صفحات  -

تاریخ انتشار 2006